Printed Pages: 02	Sub Code: MTCS102
Paper Id: 210102	Roll No.

M. TECH. (SEM-I) THEORY EXAMINATION 2018-19 ADVANCED ALGORITHM

Time: 3 Hours Total Marks: 70

Note: Attempt all Sections. If require any missing data; then choose suitably.

SECTION - A

1. You are required to answer all the parts of this question. $(2\times7=14 \text{ marks})$

a) $T_1(n)=O(f(n))$ and $T_2(n)=O(g(n))$ then, show that $T_1(n)+T_2(n)=O(\max(f(n),g(n))$

b) Solve the following recurrence

T(1)=1, $T(n)=4T(n/3)+n^2$ for $n\ge 2$ by using Master Method.

- c) Explain and write partitioning algorithm for quick sort.
- d) Explain N-Queen problem in context of 'Backtracking approach.
- e) Show the trace of heap-sort algorithm for following input data 30,50,100,200,60,80,20
- f) Describe the properties and requirements of a good algorithm
- g) Discuss any sorting algorithm that runs in linear time.

SECTION - B

2. Attempt any three parts of the following:

 $(7\times3=21 \text{ marks})$

- (a) What is dynamic programming? Explain any of its application in detail.
- (b) What are different asymptotic notations? Explain in details the Θ -Notation and O-Notation.
- (c) Show that the running time of QUICKSORT is θ (n^2), when the array A contains distinct elements and is sorted in decreasing order.
- (d) Find the optimal solution to the Knapsack instances n = 5, w = (20,30,40,10,7) v = (7,8,9,1,) and w = 80, by using Greedy approach.
- (e) Write the algorithm of Rabin-Karp string matching. Describe the procedure giving an example; give the running time complexity in worst case.

SECTION - C

3. Attempt any one part of the following:

 $(7\times1=7 \text{ marks})$

- (a) Explain in detail the Hiring problem. Give the necessary algorithms in support of your answer.
- (b) Solve the recurrence $T(n) = T(\sqrt{n}) + 1$.

Download all NOTES and PAPERS at StudentSuvidha.com

4. Attempt any one part of the following:

 $(7\times1=7 \text{ marks})$

- a) Show the red-black trees that result after recursively inserting the keys 41,38,31,12,19,8 into an initially empty Red-Black tree
- b) Write the algorithm to solve the knapsack problem using Greedy method. What is the running cost of this algorithm?

5. Attempt any one part of the following:

 $(7\times1=7 \text{ marks})$

- (a) What is Binary search tree? Derive an algorithm to search an algorithm in binary search tree.
- (b) Prove that if the weights on edge of the connected undirected graph are distinct then there is a unique minimum spanning tree. Give an example in this regard.

6. Attempt any one part of the following:

 $(7\times1=7 \text{ marks})$

- (a) Use the Build-Max-Heap operation of the given array A = (17, 10, 84, 19, 6, 22, 9, 15, 35, 30).
- (b) Write a backtracking algorithm for the sum of subset problem using the state space tree corresponding to the variable tuple size formulation.

7. Attempt any one part of the following:

 $(7\times1=7 \text{ marks})$

- (a) Explain B-Tree and how it is different from another trees.
- (b) Explain DFS in detail.

 Anniholited from Community C